ON THE SEARCH FOR AN ADDITION-INTERMEDIATE ALONG THE REACTION PATH OF NUCLEOPHILIC AROMATIC SUBSTITUTION Francesco Pietra and Francesco Del Cima

(Istituto di Chimica Generale, Universita di Pisa, Pisa, Italy) (Received in UK 2 February 1970; accepted for publication 12 February 1970)

So far the strongest evidence for the addition-elimination mechanism of nucleophilic aromatic substitution¹ has come from studies of the occurrence and form of base catalysis in reactions in which the nucleophile is a primary or a secondary amine. $^{\rm 1}$ Such a mechanism may be sketched as in eq.(1) for the case of a 2,4-dinitro-activated substrate and a secondary amine, and, if the steadystate treatment applies, it gives the rate equation (2) , where B represents a general base. including the reacting amine itself, and k the second-order rate coefficient (Rate/ $[ArX]$

A few such reactions have been found to undergo base catalysis in such a way that k

$$
k = (k_1 k_2 + k_1 k_3 \quad [B] \quad) / (k_{-1} + k_2 + k_3 \quad [B] \quad)
$$
 (2)

increases less than linearly with increasing catalyst concentration.¹ This trend has been unequivocally attributed to a change of the rate-limiting step with increasing catalyst concentration.¹ Therefore, at least one intermediate, such as (1) , must be present along the reaction path in such cases. In terms of the mechanism of eq.(1) this corresponds to $k_{-1} \approx k_2 + k_3$ [B].¹

More commonly, base catalysis of reactions of the type shown in eq. (1) results in a linear increase of k with catalyst concentration, an observation compatible with both the mechanism of

eq.(1) (when k₋₁ λ k₂ + k₃[B]) and other mechanisms as well.²

Finally, the great majority of reactions of the type in eq. (1) , notably those in which a good leaving-group is displaced, are slightly accelerated by the reacting amine but fail to be further accelerated by the addition of stronger bases. $\frac{3}{5}$ Such mild rate accelerations by the reacting amine have been attributed by various authors to a stabilisation of the transition state by a common solvent effect or, alternatively, to a more specific effect of unclear origin which, however, cannot be base catalysis in the sense commonly agreed for this terminology. I,3

However, other authors^{4,5,6} did not agree with the above interpretation and definitely attributed such rate accelerations to base catalysis of the removal of a proton from type (1) intermediates. In one such case, that of the reaction of piperidine with 4-chloro-3-nitrobenzotrifluoride in benzene at 35"C, the evidence seemed to be compelling, In fact, as required by eq.(2) in the instance that $k_{-1} \approx k_2 + k_3$ [B], both a less than linear increase of k with piperidine concentration (in the amine concentration range from 0.05 to 0.6 M) and a linear 1/k versus 1/[piperidine]plot were reported.⁴ Moreover, change to [1-²H] piperidine was reported" to give lower rates and the isotope effect $k_{2(H)}/k_{2(H)}$ for the proton abstraction step $3(h)$ $3(h)$ was calculated $^{\tau}$ to be 2.1, a figure probably much too high to be accounted for in terms of a secondary isotope effect.⁷

However, at 25° C, under otherwise identical conditions, these experiments⁴ could not be reproduced in another laboratory. 8 Rather, a very mild (linear) acceleration by piperidine and no measurable isotope effect (within the 4% uncertainty of the experimental error) were found.⁸

It has been now reported that in the reaction of piperidine with l-chloro-2-nitrobenzene in benzene the second-order rate coefficient increases very mildly with increasing piperidine concentration, the trend being linear at 75°C but less than linear at 100°C. Such results have been interpreted in terms of the mechanism of eq.(1) with $k_{-1}\gg k_2 + k_3$ [B] at the lower and 3 $k_{-1} \approx k_{2} + k_{3}$ [B] at the higher temperature. A similar change of the rate-limiting step is also 93 suggested as the origin of the above discussed disagreement of experimental results for the reaction of piperidine with 4-chloro-3-nitrobenzotrifluoride.

This report seems again to require a rather drastic revision of the mechanisms for both nucleophilic aromatic substitution and proton transfer reactions. Therefore, we report here the results of a kinetic re-investigation of the reaction of piperidine or $\left[1-\frac{2}{H}\right]$ piperidine (90%) deuteriated) with 4-Chloro-3-nitrobenzotrifluoride in benzene at 34.8°C. Purification of chemicals, product analysis and kinetic procedure are as already described 8 for the work at 25°C the rate data of which prove to be nicely reproducible.

The rate data (average of at least two runs with less than $#$ uncertainty of the experimental error) are collected in the Table, and it can be seen that they are nicely fitted by eq.(3), where PIP stands for piperidine or $\left[1-\frac{2}{H}\right]$ piperidine. This can be appreciated even better from the

$$
k = k_o + k_{\text{prp}}[\text{PIP}] \tag{3}
$$

Figure. Linear regression analysis gives $k_0 = 1.06 \times 10^{-3}$ mole⁻¹ l.sec⁻¹ and $k_{\text{prp}} = 3.77 \times 10^{-4} \text{ mole}^{-2}$. $k_{\text{prp}} = 3.77 \times 10^{-4} \text{ mole}^{-2}$. Therefore we obtain $k_{\text{prp}}/k_0 = 0.36$ mole 1.⁻¹ which compares well with the value 0.38 mole 1. previously obtained at 25°C. (Table 2 of ref.8 contains a misprint: k_0 and k_{prp} values for the reaction of 4-chloro-3-nitrobenzotrifluoride have to be interchanged).

TABLE. Second-order rate coefficient (k) for the reaction of piperidine with 4-chloro-3-nitrobenzotrifluoride (initial conc. 1.56 x 10^{-4} M) in benzene at 34.8°C.

These results clearly show that previous data reported by Brieux and his coworkers 4 for the reaction of 4-chloro-3-nitrobenzotrifluoride with piperidine or $\left[1-\frac{2}{H}\right]$ piperidine in benzene at 35° C are in error. Therefore, current theories for both nucleophilic aromatic substitution¹ and deuterium kinetic isotope effects do not need any revision at present, even when the above summarised results⁴ for the reaction of piperidine with 1-chloro-2-nitrobenzene are considered. The trend of the rates observed in the last case $\frac{9}{2}$ may in fact have quite a different origin from the suggested⁹ change of the rate-limiting step, such as, for example, a change of the free energy of the reagents with changing compositign of the medium (from 0.16 M piperidine in benzene to neat piperidine!). This should be carefully evaluated before definite conclusions about the mechanism can be drawn. \overline{a}

In any case, available data $\overline{\text{10}}$ indicate that ortho-nitro substituted substrates are the worst possible choice of a substrate where one can hope to find base catalysis in reactions of the type shown in eq.(1). In fact, the ortho-nitro group is known 10 to be able to exert a powerful anchi meric assistence of the removal of an ammonium proton from type (1) intermediates.

ACKNOWLEDGMENT

This work has been financially supported by C.N.R., Roma.

REFERENCES

- 1) F.Pietra, Quart.Rev., 23, 504 (1969).
- 2) J.F.Bunnett and J.J.Randall, J.Amer.Chem.Soc., 80, 6020 (1958).
- 3) J.F.Bunnett and R.H.Garst, J.Amer.Chem.Soc., 87, 3875 (1965).
- 4) R.L.Toranzo, R.V.Caneda, and J.A.Brieux, $J.Amer.Chem.Soc., 88, 3651 (1966).$
- 5) S.D.Ross, in "Progr.Phys.Org.Chem.", S.Cohen, A.Streitwieser, Jr., and R.Taft, ed. J.Wiley New York 1963, vol.1, p.31.
- 6) H.Suhr, Ber.Bunsenges.physik.Chem., $67, 893$ (1963).
- 7) C.R.Hart and A.N.Bourns, Tetrahedron Letters, 2995 (1966).
- 8) F.Pietra, D.Vitali, and (in part) S.Frediani, J.Chem.Soc.(B), 1595 (1968).
- 9) E.Sanhueza, R.L.Toranzo, R.V.Caneda, and J.A.Brieux, Tetrahedron Letters, 4917(1969).
- 10) F.Pietra and F.Del Cima, Tetrahedron Letters, 4573 (1967).

For example, the observation that the rate of the reaction of piperidine with 1-chloro-2-nitrobenzene is slower in the polar solvent methanol than in the less polar benzene was takely as a piece of evidence that the observed increase of the second-order rate coefficient with increasing piperidine concentration (and thereby with increasing polarity of the medium) cannot be attributed to a general medium effect. While the conclusion can be true, the comparison of methanol with the solvent mixture benzene-piperidine is most unfortunate. In fact. only methanol can effectively hydrogen bond with the piperidine electron lone pair.